第287章 模型训练的改进技术

简单来讲,剪枝就是去除神经网络中冗余的连接和神经元,量化则是把高精度的浮点型参数转换为低精度的数据类型,这两种技术能在不明显降低模型准确性的前提下,大幅减少模型参数数量和计算量,从而显着加快推理速度。

最后他又开始系统地介绍前世形成的一套较为规范的模型应用流程,这一套流程分为数据收集与预处理、模型构建、模型训练、验证和评估和评估模型几个步骤。

秦奕说道:“数据收集与预处理,要尽可能多地收集与任务相关的数据,并对数据进行清洗、标注、归一化等处理,确保数据的质量和可用性。”

“接着是模型构建,根据任务需求选择合适的神经网络架构,确定模型的层数、神经元数量等参数。”

“模型训练阶段,利用反向传播算法和合适的优化器,不断调整模型参数,使模型在训练集上的损失函数值逐渐减小。在训练过程中,要合理运用刚才提到的各种技术,防止过拟合,提升模型的泛化能力。”

前世几十年的发展时间里,优化器自然也一直都有变化,反向传播论文里面用的随机梯度下降优化器原理相对简单但存在明显缺陷,不过目前其他优化器都会增加不少计算量,所以秦奕暂时没有把其他优化器提出来。

而且他前面介绍的几种改进都相对比较直观,优化器的改进显然是要有一定的训练经验才能理解的,就算现在提了历景铄也不一定能明白。

秦奕接着说道:“训练完成后,通过在验证集上的评估,对模型进行调优。最后,将训练好且经过验证的模型应用到实际任务中,并用测试集评估模型的最终性能。”

历景铄听得入神,手中的笔不停地记录着重点内容,办公室里弥漫着浓厚的学术探讨氛围。

在探讨完模型训练和推理的范式之后,历景铄又开始思考起怎么验证模型的能力了,秦奕提议历景铄从手写体数字识别这种相对基础的任务开始。

与此同时,王天苗的机器人项目也在持续推进当中,他已在各个对搬运机器人有需求的领域展开了深入考察。